- 1-Channel
- Control circuit EEx ia IIC
- DC 24 V supply voltage
- Max. input frequency 5 kHz
- Test jacks for output current on the
face plate
face plate
- 1 Logic input
- 1 passive transistor output, serially switched
- 1 Current output
($0 \mathrm{~mA} / 4 \mathrm{~mA} . . .20 \mathrm{~mA}$)
- Max. load 650 Ohm
- Galvanic isolation between input, output and power supply

Mode of operation auxiliary switch

A dampened sensor or logic input d18 = "0" means output is switched

Function

The frequency / current converter transforms the input frequency into an impressed DC current. It is designed for connection with a sensor per DIN 19234 / NAMUR.
The unit can be controlled with a 24 V DC voltage signal via logic input d18.
A load of 650 Ohm is allowed at the analog output.
The input signal for the control of additional evaluation levels is available at the $z 32 / \mathrm{d} 32$ potential free output.

Application

- Measurement of: $\begin{aligned} & \text { rotation rates, } \\ & \text { velocity, }\end{aligned}$ velocity, flow rates
- As a control device with sequential indicators
- Digital / analog converter in an automatic control system

Front View

Type A
(dimensions see page 16)

Technical data

Power supply
Nominal voltage
Ripple
Nominal current
Input (intrinsically safe)
Nominal data
Open circuit voltage / short circuit current Switch point / switch hysteresis
Input pulse length / pulse interval
Certificate of Conformity Peak Values Max. voltage U_{0}
Max. current I_{0}
Max. power P_{0}
Allowable circuit values
Ignition protection method, category
Explosion group
Max. external capacitance
Max. external inductance
Input (not intrinsically safe)
Signal level Logic-1
Signal level Logic-0
Input pulse length / pulse interval

Outputs (not intrinsically safe)

Output I :
Nominal voltage
Nominal current
Voltage drop
Output II :
Current range
Load
Open circuit voltage
Output PB : Test jack
Current range
Load
Open circuit voltage

Transfer characteristics

Switch frequency
Operating range
Duty ratio
Combined faults
Galvanic isolation
Input / Output
Input / Power supply
Output / Power supply

Conformity to standard

Input
Climatic conditions
Ambient temperature
Connection method
Coding
Weight

Connections d14 (L+), z14 (L-)
DC 20.4 V ... 27.6 V
≤ 10 \%
max. 150 mA (with $\mathrm{J}=20 \mathrm{~mA}$ at current output)
Connections d2+, d4-
per DIN 19234 or NAMUR
about DC $8 \mathrm{~V} /$ about 8 mA
$1.2 \mathrm{~mA} . . .2 .1 \mathrm{~mA} /$ about 0.2 mA
$\geq 1 \mathrm{~ms} / \geq 1 \mathrm{~ms}$

PTB Nr. Ex-81/2065X other certifications see www.pepperl-fuchs.com
13.2 V
18.8 mA

62 mW
[EEx ia]

IIB	$/$ IIC	IIB	$/$ IIC
$1.31 \mu \mathrm{~F}$	$/ 0.415 \mu \mathrm{~F}$	$3.0 \mu \mathrm{~F}$	$/ 0.66 \mu \mathrm{~F}$
5 mH	$/ 2 \mathrm{mH}$	320 mH	$/ 85 \mathrm{mH}$

Logic input
Connections d18
DC 16 V ... 30 V
DC 0 V ... 5 V or B-circuit input
$\geq 0.1 \mathrm{~ms} / \geq 0.1 \mathrm{~ms}$

Transistor output, passive Connections d32+, z32-
sDC 30 V
100 mA , short circuit protected, pulsating
25 V with 100 mA (leakage current $\mathrm{J} \leq 10 \mu \mathrm{~A}$)
Current output Connections d28+, z28-
$0 \mathrm{~mA} / 4 \mathrm{~mA} . .20 \mathrm{~mA}$
650 Ohm
about 30 V
Current output Connections +, - (facing)
$0 \mathrm{~mA} / 4 \mathrm{~mA} . .20 \mathrm{~mA}$
≤ 250 Ohm
about 7.5 V
$\leq 5 \mathrm{kHz}$
$0.001 \mathrm{~Hz} \leq f_{\mathrm{n}} \leq 999 \mathrm{~Hz}$
1:1
$\leq 1 \%$
available
available
available
per DIN 19234 (NAMUR)
per DIN IEC 721
$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}(273 \mathrm{~K} \ldots 343 \mathrm{~K})$
32-pin plug connector per DIN 41 612, Series 2, Type F; z and d provided a3 / c13
about 200 g
Function

Adjustment of the time constant

Frequency adjustments at the input

Output characteristics

The frequency / current converter transforms the input frequency into an impressed DC current. It is designed for connection with a sensor per DIN 19234 / NAMUR.
The unit can be controlled with a 24 V DC voltage signal via logic input d18.
The input frequency at which 20 mA flow in the output, is adjustable in the range of 0.001 Hz $\ldots 999 \mathrm{~Hz}$. Higher frequencies must be reduced by the pre-scaler to a level at which a maximum of 1 kHz can be applied to the microprocessor system (see adjustment instructions). A load of 0 Ohm ... 1 Ohm is permitted accross the analog output.
The time response of the analog output at a step change in input frequency can be adjusted with a thumbwheel switch on the front panel.

The frequency / current converter has an input / output time response, which means the time can be adjusted with the S5 thumbwheel switch after which the output current rises with a marked increase in the input frequency. The value of the time constant τ is obtained through the following formula:

$$
\tau=\frac{2^{\mathrm{N}+1}}{\mathrm{f}_{\mathrm{E}}}
$$

$J(t) \quad=J_{1}+\left(J_{2}-J_{1}\right) \times\left(1-e-{ }_{\tau}^{t}\right)$
$=J_{1}+\Delta J \times\left(1-e-{ }_{\tau}^{t}\right)$
$J(t)$: Output current
J_{1} : Output current at frequency f_{1}
J_{2} : Output current at frequency f_{2}^{1}
$\Delta \mathrm{J}$: Output current difference $\mathrm{J}_{2}-\mathrm{J}_{1}$
τ : Time constant

Adjustment instructions Pre-scaler

Frequency adjustment

Table:
Thumbwheel switch adjustments

Example

The input frequency f_{E} is reduced by the pre-scaler depending on the position of the plug in jumper SL1, since the frequency / current converter processes at a maximum 1 kHz .

	Pre-scaler	$\max ^{2} \mathrm{f}_{\mathrm{E}}$
SL1 in Pos. I:	$1: 1$	1 kHz
SL1 in Pos. II:	$2: 1$	2 kHz
SL1 in Pos. III:	$10: 1$	5 kHz

The position of link SL2 determines whether the serially switched output operates dependently or independently of the pre-scaler setting.

SL2 in Pos. I: The serially switched output is independent of the pre-scaler SL2 in Pos. II: The serially switched output is dependent upon the pre-scaler

The frequency at which a maximum current of 20 mA flows, may be adjusted with thumbwheel switches S1 to S4 (see front view). The position of the pre-scaler must however, also be taken into account.

Switch S4 Switch Position	Nominal Frequency f_{n} $(S 1+S 2+S 3)$	0-Point of the Output Characteristic
0	$\times 10^{-0} \mathrm{~Hz}$	0 mA
1	$\times 10^{-1} \mathrm{~Hz}$	0 mA
2	$\times 10^{-2} \mathrm{~Hz}$	0 mA
3	$\times 10^{-3} \mathrm{~Hz}$	0 mA
4	$\times 10^{-0} \mathrm{~Hz}$	4 mA
5	$\times 10^{-1} \mathrm{~Hz}$	4 mA
6	$\times 10^{-2} \mathrm{~Hz}$	4 mA
7	$x 10^{-3} \mathrm{~Hz}$	4 mA

A current of $0 \mathrm{~mA} \ldots 20 \mathrm{~mA}$ is desired with an input frequency of $0 \mathrm{~Hz} \ldots 5 \mathrm{kHz}$.

1. Adjustment of pre-scaler with link SL1 in Pos. III; this supplies the frequency / current converter with a frequency of 500 Hz .
2. Adjustment of the thumbwheel switches S 1 to S 4 :

S1 = 5,
S2 $=0$,
S3 $=0$,
S4 = 0 according to table

